
 1

Aspect-Oriented Programming is Quantification and Oblivi-
ousness

 Robert E. Filman Daniel P. Friedman
 RIACS Computer Science Department
 NASA Ames Research Center Indiana University
 Moffett Field, CA 94035 Bloomington, IN 47405
 rfilman@arc.nasa.gov dfried@cs.indiana.edu

Abstract
This paper proposes that the distinguishing characteristic of Aspect-Oriented Programming
(AOP) systems is that they allow programming by making quantified programmatic assertions
over programs written by programmers oblivious to such assertions. Thus, AOP systems can be
analyzed with respect to three critical dimensions: the kinds of quantifications allowed, the nature
of the actions that can be asserted, and the mechanism for combining base-level actions with as-
serted actions. Consequences of this perspective are the recognition that certain systems are not
AOP and that some mechanisms are expressive enough to allow programming an AOP system
within them. A corollary is that while AOP can be applied to Object-Oriented Programming, it is
an independent concept applicable to other programming styles.

1. Introduction
This paper is about Aspect-Oriented Programming (AOP) qua programming language. We are
interested in determining what makes a language AOP. This work was prompted by a question
from Tzilla Elrad, who asked whether event-based, publish and subscribe (EBPS) (for example,
[9]) is AOP. After all, in a publish-and-subscribe system, separate concerns can be realized by
subscribing to the events of interest to those concerns. In thinking about that question, we have
come to the belief that two properties, quantification and obliviousness, are necessary for AOP.1
Understanding these relationships clarifies the variety of possible AOP languages. It demonstrates
why some systems that might seem to be AOP are not, and why some systems are environments
in which one might easily build an AOP system.

2. Local and unitary statements
Programming languages are about writing a structure of statements that a compilation or interpre-
tation process will elaborate as a series of primitive directions. (The directions themselves will be
a finite text, though their interpretation may be unbounded.) The earliest computer (machine lan-
guage) programs had a strict correspondence between the program text and the execution pattern.
Generally, each programming language statement was both unitary and local—unitary in that it
ended up having effect in precisely one place in the elaborated program, and local in that it is al-
most always proximate to its neighboring statements.2

1 We are addressing the structural essence of AOP here, not it’s application—somewhat similar to the dif-
ference between defining Object-Oriented Programming (OOP) systems in terms of polymorphic methods
and inheritance, versus waxing euphoric about objects as the appropriate way to model the world.
2 A minor exception to locality and unitarity was the introduction of types. Type declarations can have non-
local and quantified effects such as type-coercion and type consistency checks. Types in conventional lan-
guages are thus an example of a built-in separate concern.

 2

The history (of this part) of programming languages has been about moving away from purely
local and unitary languages—about mechanisms that let the programmer separate concepts prag-
matically, instead of being tied to saying things just where they happen. The first exceptions to
locality were subprograms (i.e., procedures, subroutines, functions.) Subprograms were a great
invention, enabling abstracting out some behavior to someplace else. They have all the virtues of
separating concerns. For example, expertise in, say, Runge-Kutta methods could be centered in
the writer of the Runge-Kutta library. The application programmers would be users of that li-
brary. They still had to know something about Runge-Kutta (when it was useful, how to invoke
it), and had to locally and explicitly call it in their code. They had to be cognizant of what was
going on. One could still identify which statements would execute in which order, and the pro-
gram was still unitary: it exhibited a direct correspondence between one statement in the pro-
gramming language written, one sequence of machine instructions executed.

Inheritance in object-oriented programming (OOP) was the second important introduction of
non-locality. Executing inherited behavior is non-local. There are two different fashions of inher-
iting behavior, send super and mixins.

Send-super systems like Java and Smalltalk allow the programmer to explicitly invoke the be-
havior of its parent class or classes, without knowing exactly what behavior is being invoked.
Adding behavior to classes higher in the class structure allows a limited form of quantified pro-
gram statements—that is, statements that have effect on many loci in the underlying code. For
example, suppose we wish to introduce a “display” aspect to a program about simulating traffic
movement. We will want to make quantified statements like “Whenever something moves (exe-
cutes its move method), the screen must be updated.” Imagine that all things that move are de-
scendants of the class of moveable-object. We can accomplish this with send-super inheritance, if
we have a cooperative base-class programmer—that is, one who will consistently follow direc-
tions. We make the behavior of the move method in movable-object be the display update and
request the programmers of derivative classes to invoke send-super at the end of their code. This
requires the derived class programmers to know that they have to do something, but relieves them
of having to know what exactly it is that they have to do. We’re also restricted with respect to the
locus of behavior—we can ask programmers to do the send-super at the start of their code, or at
the end, but our directions probably need to be consistent throughout the system.

Requiring cooperation is not good enough. Programmers may fail to be systematically coop-
erative, the base program may itself be already written or it may be otherwise out of our control.
For true AOP, we want our system to work with oblivious programmers—ones who don’t have to
expend any additional effort to make the AOP mechanism work. The earliest example of oblivi-
ous quantification is mixin inheritance, found in MacLisp and Symbolics Lisp [5,15]. With mix-
ins, the derived-class functionality is determined by assembling the code of the derived class with
the advice of its super classes. The aspect programmer can make quantified statements about the
code by adding mixins, while the derived class programmer remains ignorant of these actions.
The scope of quantification is controlled by which classes inherit the mixin. That is, we can quan-
tify over the descendants of some superclass, for a given single method. In the screen update ex-
ample, adding an “after” mixin to movable-object’s move accomplishes the automatic update.

In using inheritance to achieve aspects, single superclass inheritance systems require all as-
pects to match the class structure of the original program, while multiple inheritance systems al-
low quantification independent of the program’s dominant decomposition. Mixins with multiple
inheritance are thus a full aspect-oriented programming technology.

In general,

AOP can be understood as the desire to make quantified statements about the
behavior of programs, and to have these quantifications hold over programs

written by oblivious programmers.

 3

We want to be able to say, “This code realizes this concern. Execute it whenever these circum-
stances hold.” This breaks completely with local and unitary demands—we can organize our pro-
gram in the form most appropriate for coding and maintenance. We do not even need the local
markings of cooperation. The weaving mechanism of the AOP system can, by itself, take our
quantified statements and the base program and produce the primitive directions to be performed.

3. Quantification
AOP is thus the desire to make programming statements of the form

 In programs P, whenever condition C arises, perform action A. (1)

over “conventionally” coded programs P. This implies three major dimensions of concern for the
designer and implementer of an AOP system:

• Quantification: What kinds of conditions C can we specify.
• Interface: What is the interface of the actions A. That is, how do they interact with base

programs and each other.
• Weaving: How will the system arrange to intermix the execution of the base actions of

program P with the actions A.

In an AOP system, we make quantified statements about which code is to execute in which cir-
cumstances. Over what can we quantify? Broadly, we can quantify over the static structure of the
system and over its dynamic behavior.

3.1. Static quantification

The static structure is the program as text. Two common views of program text are in terms of the
public interfaces of the program (typically methods, but occasionally also public variables) and as
a parsed-program as abstract syntax tree.

Black-box AOP systems quantify over the public interface of components like functions and
object methods. Examples of black-box systems include Composition-Filters [2], synchronization
advice [11] and OIF [8]. A simple implementation mechanism for black-box AOP is to wrap
components with the aspect behavior.3

Clear-box AOP systems allow quantification over the parsed structure of components. Exam-
ples of such system include AspectJ, which allows (among other things) quantifying over both the
calling and accepting calls in subprograms [13], and Subject-Oriented Programming, whose com-
position rules allow quantifying over elements such as the interpretation of variables within mod-
ules [10]. A given AOP system will present a quantification language that may be as simple as
just allowing aspect decoration of subprogram calls, or complex enough to represent pattern
matching on the abstract syntax tree of the program. Understood this way, a clear-box AOP sys-
tem could allow static quantifications such as “add a print statement to show the new value of any
assignment to a variable within the body of a while loop, if the variable occurs in the test of the
while loop.”

Clear-box and black-box techniques each have advantages and disadvantages. Clear-box tech-
niques require source code. They provide access to all the (static) nuances of the program. In en-
vironments without the trickery of CORBA proxies or the equivalent, they can straightforwardly
implement “caller-side” aspects (aspects associated with the calling environment of a subprogram
invocation). Black-box techniques are typically easier to implement (in environments like Lisp
they can be downright trivial) and can be used on components where the source code is lacking.

3 OIF applied AOP to distributed systems, where it is important to perform aspects actions both on the cli-
ent and server machines. Fortunately, the common implementations of distributed object systems like
CORBA employ a proxy compiler that is easily subverted to insert calls to aspects.

 4

Because black-box techniques can’t quantify over anything besides a program’s interface,
clear-box techniques are especially useful for debugging. For example, a clear-box system could
implement a concern like a statement-execution counting profiler, or writing to a log file on every
update of a variable whose name starts with “log.” However, black-box techniques are more
likely to produce reusable and maintainable aspects—an aspect tied to the code of a module can
easily slip into dependence on the coding tricks of that module. Interfaces imply contracts.

Clear-box techniques are more difficult to implement, as they usually imply developing a ma-
jor fraction of a compiler. A typical clear-box implementation of structural quantification needs to
obtain a parsed version of the underlying program, run transformation rules realizing the quanti-
fied aspects over that abstract syntax tree, and output the resulting tree back in the source lan-
guage for processing by the conventional language compiler. That can be a lot of work.4

3.2. Dynamic quantification

Dynamic quantification is tying the aspect behavior to something that happens at run-time. Ex-
amples of such things are

• The raising of an exception.5
• The call of a subprogram X within the temporal scope of a call of Y.6
• The size of the call stack.
• Patterns on the history of the program (e.g., after the “try password” routine has failed

five times, with no intervening successes.)

Keep in mind that the abstractions most programming languages present about the structure and
execution of a program are only a subset of the possible available abstractions: Scheme allows a
programmer to capture the “current context” and reinvoke the current behavior. C programmers
glibly rummage around on the stack, content in the knowledge that the pattern of procedure calls
is straightforwardly recognizable so long as the machine and compiler remain constant. 3-Lisp
allows the programmer access to the interpreter’s state [7]. Elephant allows reference to previous
variable values [14]. The ability to program with respect to such properties is an aspect of pro-
gramming language design. Even if such elements are absent in the underlying language, an as-
pect language may still allow quantification over them.

4. Implementation issues
Assertion (1) suggests several other dimensions of aspect-oriented language design bear mention-
ing, though we lack the space to discuss them more fully.

4 The popularity of Java byte-coding allows the possibility of quantifying with respect to byte code. We can
clearly quantify over byte-code features demanded by the JVM architecture (e.g., method entry points). To
the extent that recognizable features of the surface structure are realized in recognizable ways in the byte
code, we can quantify over these features and work with class files. Good luck if someone used a different
compiler.
5 Exception-handling by catching remotely thrown exceptions provides dynamic quantification over the
exception events (but too late to do most interesting things with them, as the exception context has been
lost). In Interlisp [16], the DWIM (do-what-I-mean) mechanism allowed quantification over exception
events within the context of the exception.
6 This does not fall out of the structural relationships of subprograms, as X may have been invoked by some
pointed-to function, as can easily arise in polymorphic OOP. The call of X within the context of Y problem
is an instance of the “jumping aspect” problem [3]. A concrete example of this problem arises when move
is being used as an interior step of a “grander move,” such as moving a collection of objects simultane-
ously. In that case, we want to update the display only once, at the end of the grand operation.

 5

• Context. What context of the underlying program can action A reference? Clear-box
systems can go so far as to make the aspect action be a seamless part of the resulting
code, though tangling the aspect expression with the specifics of an implementation
raises questions of “real” separation of concerns.

• Quantification scope. Over what elements in the program can one quantify? Typical
choices include all methods on all objects in this class, all methods on all objects in this
package, all methods with a given name within the objects of all subclasses of a class,
and instance level variations of the above.

• Dynamic quantification. Can quantified assertions be made in a running system, dy-
namically adding and removing actions?

• Incomplete Obliviousness. Though we want the application programmer to be mostly
oblivious of aspect system, there are times that the application needs to communicate
with the aspects. For example, consider an action that provides a higher quality of ser-
vice to higher priority tasks. The application needs a mechanism for specifying the cur-
rent task’s priority.

• Action interaction. How do actions communicate? Both different actions on the same
locus and the same action on different loci may need to exchange information. (For
example, the authentication and access control aspects on method M of object X may
need to interact. Similarly, the authentication aspect on all objects may need to share a
common space.)

• Relative aspect orderings. How do we specify the order of multiple actions that apply
to the same locus?

• Inconsistent aspects. Sometimes one action may violate the semantics of another. For
example, an action that logs progress may violate the “all-or-nothing” semantics of a
transactional action. An AOP system may have some linguistic mechanisms for warn-
ing or forestalling such inconsistencies.

• Weaving. In an implementation sense, how do we arrange for the behavior of the ac-
tions to be intermixed with the behavior of the base system code? The answer may in-
clude compile-time weaving and altering the run-time interpretation process.

5. Aspect-Oriented Languages
To return to Tzilla’s question, what’s an aspect-oriented language? Let us consider some possi-
bilities:

• Rule-based systems. Rule-based systems like OPS-5 [4] or, to a lesser extent, Prolog
are programming with purely dynamically quantified statements. Each rule says,
“whenever the condition is true, do the corresponding action.”7 If we all programmed
with rules, we wouldn’t have AOP discussions. We would just talk about how rules that
expressed concerns X, Y, and Z could be added to the original system, with some men-
tion of the tricks involved in getting those rules to run in the right order and to commu-
nicate with each other. The base idea that other things could be going on besides the
main flow of control wouldn’t be the least bit strange.

But by and large, people don’t program with rule-based systems. This is because
rule-based systems are notoriously difficult to program. They’ve destroyed the funda-
mental sequentially of almost everything. The sequential, local, unitary style is really

7 Actually, it’s not nearly that neat, because the rule-based systems people insist on doing only one of the
matching conditions and then considering the whole problem again, but that’s an implementation detail.

 6

very good for expressing most things. The cleverness of classical AOP is augmenting
conventional sequentially with quantification, rather than supplanting it wholesale.

• Event-based, publish and subscribe. In EBPS systems, the subscription mechanism is
precisely a quantification mechanism. (“Let me know whenever you see something like
…”). The question is then, is EBPS oblivious? If the application’s programming style is
to use events as the interface among components, then EBPS is a black-box AOP
mechanism. On the other hand, if we expect the programmer to scatter event generation
for our purposes throughout otherwise conventional programs, it’s not oblivious and
therefore not AOP.

• Intentional Programming and Meta-programming. Intentional programming (IP) [1]
and meta-programming (MP) [12] provide the ability to direct the execution order in
arbitrarily defined computational patterns. They can be seen as environments for writ-
ing transformation compilers, a mechanism for implementing clear-box AOP, rather
than as self-contained realizations of the AOP idea.

• Generative Programming. Similarly, generative programming [6] works by
transforming higher-level representations of programs into lower-level ones (that is, by
compiling high-level specifications.) By incorporating aspects into the transformation
rules, one can achieve AOP in a generative programming environment. Correspond-
ingly, the creator of a generative programming system may recognize some aspects as
being important to the domain-specific system being defined, and precisely leave a
place in the generative language for expressing those aspects.

6. Closing Remarks
In this paper we have identified AOP with the ability to assert quantified statements over pro-
grams written by oblivious programmers. This implies

• AOP is not about OOP. OOP is the current dominant programming language technol-
ogy. Most implementations of new language ideas are done in the context of OOP.
However, “oblivious quantification” is independent of OO concepts. Therefore, it
would be perfectly reasonable to develop AOP for a functional or imperative language.8

• AOP is not useful for singletons. If you’ve got an orthogonal concern that is about ex-
actly one place in the original code, and you’re sure that that orthogonal concern will
not propagate to other loci as the system evolves, it is probably a bad idea to use AOP
for that concern. Just write a call to the aspect procedure into that one place in the code,
or permute the source code in whatever way you thought necessary to achieve the as-
pect. The quantity of communication (among programmers) required to do aspects in
general probably equals the quantity of communication required to modify just one pro-
gram. The homogenized code leaves no ambiguity about what’s happening, but may be
less clear than what’s happening as written as separate aspects.

• Better AOP systems are more oblivious. They minimize the degree to which pro-
grammers (particularly the programmers of the primary functionality) have to change
their behavior to realize the benefits of AOP. It’s a really nice bumper sticker to be able
to say, “Just program like you always do, and we’ll be able to add the aspects later.”
(And change your mind downstream about your policies, and we’ll painlessly transform
your code for that, too.)

8 The class hierarchy of OO systems is a convenient structure over which to quantify. OOP is thus a “pleas-
ant” environment for AOP, but not a necessary one.

 7

Acknowledgements
Our thanks to Diana Lee and Tarang Patel for comments on the drafts of this paper.

References
1. Aitken, W., Dickens, B., Kwiatkowski, P., de Moor, O., Richter, D., and Simonyi, C.,

"Transformation in intentional programming," in Devanbu, P. and Poulin, J. (Eds.) Proc.
5th Intl Conf. on Software Reuse, Victoria, Canada, IEEE Computer Society Press, June
1998, pp 114–123. http://www.research.microsoft.com/ip/overview/TrafoInIP.pdf

2. Aksit M. and Bedir Tekinerdogan, B. Solving the modeling problems of object-oriented
languages by composing multiple aspects using composition filters. AOP'98 workshop po-
sition paper, 1998. http://wwwtrese.cs.utwente.nl/Docs/Tresepapers/FilterAspects.html

3. Brichau, J., De Meuter, W., and De Volder, K. Jumping aspects. Workshop on Aspects and
Dimensions of Concerns, ECOOP 2000, Cannes, France, June 2000.

4. Brownston, L., Farrell, R., Kant, E. and Martin, N. Programming Expert Systems in OPS5.
Reading, Massachusetts: Addison-Wesley, 1985.

5. Cannon, H. Flavors: A non-hierarchical approach to object-oriented programming. Sym-
bolics Inc. (1982).

6. Czarnecki, K. and Eisenecker, U. W. Generative Programming: Methods, Tools, and Ap-
plications. Boston: Addison-Wesley, 2000.

7. des Rivieres, J. and Smith, B. C. The implementation of procedurally reflective languages.
Conference Record of the 1984 ACM Symposium on LISP and Functional Programming,
pp. 331–347, Austin, Texas, August 1984.

8. Filman, R. E., Barrett, S., Lee, D. D., and Linden, T. Inserting ilities by controlling
communications. Communications of the ACM, in press.
http://ic-www.arc.nasa.gov/ic/darwin/oif/leo/filman/text/oif/oif-cacm-final.pdf

9. Filman, R. E. and Lee, D. D. Managing distributed systems with smart subscriptions. Proc.
International Conference on Parallel and Distributed Processing Techniques and Applica-
tions (PDPTA'2000), Las Vegas, June 2000, pp. 853–860.

10. Harrison, W., and Ossher, H., Subject-Oriented Programming – a critique of pure objects.
Proceedings of 1993 Conference on Object-Oriented Programming Systems, Languages,
and Applications, Washington, September 1993, pp. 411–428.

11. Holmes D., Noble J. and Potter J., Towards reusable synchronisation for object-oriented
languages. Aspect-Oriented Programming Workshop, ECOOP'98, July 21, 1998.
http://www.mri.mq.edu.au/~dholmes/research/aop-workshop-ecoop98.html

12. Kiczales, G., des Rivieres, J., and Bobrow, D. The Art of the Metaobject Protocol. Cam-
bridge, MA: MIT Press, 1991.

13. Lopes, C. V. and Kiczales, G. Recent developments in AspectJ.
ECOOP'98 Workshop Reader. Berlin: Springer-Verlag LNCS 1543, 1998.
http://www.parc.xerox.com/csl/groups/sda/publications/papers/Lopes-AOPW-ECOOP98/

14. McCarthy, J. Elephant. http://www-formal.stanford.edu/jmc/elephant.html.
15. Moon, D. A. Object-oriented programming with flavors. ACM Conference on Object-

Oriented Programming Systems, Languages, and Applications (OOPSLA ‘86) ACM SIG-
PLAN Notices, vol. 21, no. 11, 1986, pp. 1–8.

16. Teitelman, W. and Masinter, L. The Interlisp programming environment, Computer vol.
14, no. 4, 1981, pp. 25–34.

	Acknowledgements
	References

